Guide of AGrade catalog

- Chapter 1 Company portrait and range of services----
- Chapter 2 grade choice guide------
- Chapter 3 stock list----
 - 3.1.1 Carbide rods as sintered and ground----
 - 3.1.2 Carbide rods with a straight hole----
 - 3.1.3 Carbide rods with 2 straight coolant holes----
 - 3.1.4 Carbide flats and squares-----
 - 3.1.5 Carbide blocks-----
 - 3.1.6 Gundrill blanks and inserts---

Company portrait and range of services

AGrade Carbide is located in Dezhou, Shandong, registered in 2007. It is a high-tech enterprise integrating the development, production, and sales of cemented carbide products. Over the years, we have provided efficient solutions for aerospace, automobile manufacturing, mold manufacturing, and medical instruments, chemical equipment, mining, oil and gas, military production and other industries. As one of the biggest tungsten carbide manufacturers in China, we are firm in our original intention, brave to innovate, and continue to move forward, striving to be the first-class carbide manufacturer in China and creating a world-renowned brand!

AGrade Carbide manufactures solid tungsten carbide rods, insert blanks, strips and blocks as well as other shapes in a wide range of carbide grades, lengths, and diameters. We offer both ground and as sintered (unground) solid rods with wide range of diameters, lengths, finishes, and carbide grades.

We also supply our clients with carbide cutting tools such as end mills, reamers, drill bits, inserts in high performance with so many years experience in this industry. Our cutting tools have a perfect brand as "Drillstar".

Our company takes the customer demand as the goal and "honest service, scientific and technological innovation" as the enterprise tenet; first class technology, first-class product quality and first-class service are the eternal commitment and pursuit of AGrade.

Highly specialized products require highly qualified know-how. We have it. Some employees have more than 20 years of professional experience in carbide production. Scientists and engineers work together with technical experts to further develop our products and services.

Our customers can be found all over the world. AGrade is the right partner for your company because our service knows no boundaries. We offer you a broad product portfolio and support you with advice based on partnership, from which tailor-made and economical, individual solutions emerge. Because that and nothing else is what we mean by customer satisfaction - cooperation that makes you satisfied.

Grade selection principle

After selecting various types of alloys for different processed materials, the brand should also be selected according to the processing parameters. Generally speaking, the surface quality of the workpiece should be considered for finishing processing, that is, surface accuracy. During processing, the cutting speed is fast, the depth of cutting is small, the amount of cutting is small, the vibration is small, and the impact is small. It is required that the alloy has good wear resistance, high hardness, followed by strength and toughness, so the alloy with fine grain, high titanium content, and low cobalt content should be selected; The semi finishing wear resistance and strength toughness are moderate, and the alloy with medium particle tungsten carbide, medium Ti content and medium Co content is selected; Rough machining has large cutting depth, large cutting amount, slow cutting speed, large vibration and large impact, so it is emphasized that the impact resistance of the blade is better, followed by the wear resistance. Coarse grained tungsten carbide, alloys with low Ti content and high Co content should be selected.

The grade is designed according to the cutting requirements. The machinability of different processed materials is different. Carbon steel has good plasticity and toughness, and the chips are not easy to break. The chips are discharged from the rake face, causing strong crater wear on the rake face. Therefore, for the cutting of steel, we should choose cemented carbide that resists crater wear. Tic and TAC (NBC) have good anti crater wear effect, so the brand of cutting steel contains tic, TAC (NBC) generally does not choose the brand containing TAC (NBC) for cutting carbon steel due to the increased cost. TAC (NBC) can not only resist crescent wear, but also improve the thermal shock resistance of the alloy. Therefore, the alloy containing TAC (NBC) has good high temperature performance. When machining M-type alloy, due to serious work hardening, large cutting resistance and high cutting temperature, the alloy containing TAC (NBC) should be selected; For brittle materials such as cast iron, the chips are in the form of crumbs or powder, and the wear of the rake face is small, mainly the wear of the rear face. The machining characteristics of brittle materials are that the cutting force and cutting heat are concentrated near the cutting edge, so that the load on the cutting edge is very heavy, which is prone to wear and edge collapse. Generally, tungsten cobalt alloys are selected. Because the alloys containing tic are relatively brittle, W-Co alloys are stronger and more ductile than w-co-ti alloys.

			Binder	Density	Hardr	ness	Transverse	Pressure	Fracture	Special Properties/	
Carbide	Grain Size	Binder	0/ Jackar	alom			Rupture**	Resistance**	Toughness***	Applications	
grade			% w/w	g/cm	HV30	HRA	N/mm²	N/mm²	N/mm². m¹/²		
AU8	ultrafine	Cobalt	8.0	14.5	1860	93.2	4100	6300	8.5	ideal for high performance milling	
AU12	ultaine	Copait	12.0	14.0	1680	92.2	4400	6000	9.5		
AS3			3.3	15.2	2000	94.0	3400	6500	7.8	for extreme wear applications	
AS6			6.0	14.8	1820	93.1	3800	6400	8.5		
AS7	submicron	Cobalt	7.5	14.7	1740	92.7	4100	6300	9.0	our main grade for metal cutting	
AS10			10.0	14.4	1600	91.9	4300	6000	9.8		
AS15			15.0	13.9	1390	90.3	4500	5500	12.5	gearing, paper knives	
AF6	fine	Cobalt	6.5	14.8	1690	92.5	3600	5700	9.2	slitting saws, gun drills	
AF12		Cobait	12.0	14.3	1390	90.3	4200	5200	11.2	wear proctection	
AM6			6.5	14.8	1590	91.9	3600	5500	9.5		
AM8	medium	Cobalt	8.5	14.6	1500	91.2	3800	5300	10.4	for wear applications with higher	
AM11	medium	Cobait	11.0	14.4	1390	90.3	4000	5000	11.8	toughness requirements	
AM15			15.0	14.0	1230	88.7	4200	4500	14.5		
ANC8			8.5	14.5	1550	91.6	3700	5400	10.0	EDM grades with corrosion	
ANC12	medium	Cobalt	12.0	14.2	1380	90.3	3900	5000	13.0	inhibitor, optimal stress crack	
AMC15			15.0	13.9	1260	89.1	4100	4500	17.5	reduction	
AC10			10.0	14.5	1300	89.5	3800	4600	12.5		
AC11	coarse	Cobalt	11.0	14.3	1600	87.6	2700	4200	14.5	high toughness;for mining and	
AC15		Coburt	15.0	14.0	1080	87.2	4000	4000	18.5	road construction,hot forming	
AC22			22.0	13.4	890	84.7	3800	3500	20.0		
ASN6	submicron	Nickel	6.0	14.8	1770	92.9	3400	6000	8.1	corrosion restistant,	

ASN8			8.5	14.5	1650	92.2	4000	5800	8.5	non-magnetisable
AFN8			8	14.5	1600	91.9	3900	5500	8.3	
AFN12	fine		12	14.2	1350	90.0	4200	5000	11.0	
AFNC11			11	14.2	1600	91.9	2100	4500	8.0	
AMN15	medium		15	14.0	1100	87.3	3800	4000	13.0	corrosion restistant
ACT9	000700	Cabalt	9	14.6	1260	89.0	2800	4800	11.0	For tunnel Pering
ACT11	coarse	Cobalt	11	14.3	1070	87.0	2850	4300	13.5	For tunnel Boring

[Dimension			As s	intered		Ground			
As sinter	Ground	length	AS6	AU8	AS10	AU12	AS6	AU8	AS10	AU12
mm	mm	mm								
毛坯直径	精磨直径	长度								
1.7	1.5	330			X				X	
2.2	2.0	330	x		X		X		X	
2.7	2.5	330	x		X				X	
3.2	3.0	330	x	Х	X	Х	X	х	X	Х
3.7	3.5	330	X		X		X		X	
4.2	4.0	330	X	Х	X	Х	X		X	Х
4.7	4.5	330			X				X	
5.2	5.0	330	x		X	Х	X		X	Х
5.7	5.5	330			X				X	
6.2	6.0	330	x	X	X	Х	X		X	Х
6.7	6.5	330	x		X		X		X	
7.2	7.0	330	x		X				X	
7.7	7.5	330			X				X	
8.2	8.0	330	x	Х	X	Х	X		X	Х
8.7	8.5	330			X				X	
9.2	9.0	330	X		X				X	
9.7	9.5	330			X				X	
10.2	10.0	330	X	X	X	X	X		X	Х
10.7	10.5	330			X				X	
11.2	11.0	330			X				X	
12.2	12.0	330	x	Х	X	Х	X		X	Х
13.2	13.0	330	x		X		X		X	
14.2	14.0	330	x		X	Х	X		X	Х
15.2	15.0	330	x		X				X	
16.2	16.0	330	X	X	X	X	X		X	X
17.2	17.0	330			X				X	
18.2	18.0	330	X	X	X	Х	X		X	X
19.2	19.0	330								
20.2	20.0	330	x		x	X	x		x	X
21.2	21.0	330			X	-			X	-
22.2	22.0	330			X				X	
23.2	23.0	330			X				X	
24.2	24.0	330			X				X	
25.2	25.0	330			X	X			X	X
26.2	26.0	330			X				x	
28.2	28.0	330			X				X	
30.2	30.0	330			x				x	
31.2	31.0	330			x				x	
32.2	32.0	330			X				x	
	from stock a		a a noral d	onditiono			1			

	Dimension		As sintered stock
Out diameter mm	Hole diameter mm	Length mm	AS10
2.2	0.8	330	X
3.2	0.6	330	X
4.2	0.6	330	X
6.2	1.0	330	X
6.2	1.5	330	X
7.2	1.1	330	X
8.2	1.2	330	X
8.2	1.3	330	X
8.2	1.5	330	X
8.2	2.0	330	X
10.2	1.0	330	X
10.2	1.6	330	X
10.2	2.0	330	X
12.2	1.5	330	X
12.2	2.0	330	X
12.2	3.0	330	X
14.2	2.0	330	X
14.2	2.5	330	X
14.2	3.0	330	x
16.2	2.0	330	X
16.2	3.0	330	X
18.2	3.0	330	X
20.2	2.0	330	x
20.2	3.0	330	X
20.2	3.5	330	X
22.2	3.0	330	X
24.2	4.0	330	X
25.2	4.0	330	X
26.2	4.0	330	X
28.2	4.0	330	X
30.2	5.0	330	X
32.2	5.0	330	X

X: delivery from stock, according general conditions

Other: Special executions, grades or dimensions upon request

	Dim	ension		Stock		Dime	nsion		Stock
D mm	Lmm	TK mm	D mm	AS10	D mm	Lmm	TK mm	D mm	AS10
4.2	330	1.8	0.8	Х	16.2	330	8.0	2.0	Х
5.2	330	1.9	0.8	Х	17.2	330	6.0	2.0	Х
6.2	330	1.5	0.9	Х	17.2	330	7.9	2.0	Х
6.2	330	3.0	1.2	X	18.2	330	6.0	2.0	Х
7.2	330	1.4	0.8	X	18.2	330	8.9	2.0	Х
7.2	330	3.4	1.0	X	19.2	330	6.0	2.0	Х
8.2	330	2.6	0.9	Х	19.2	330	8.8	2.0	Х
8.2	330	2.8	1.0	X	20.2	330	6.0	2.0	Х
8.2	330	3.3	0.9	Х	20.2	330	9.8	2.5	Х
9.2	330	2.5	1.0	Х	21.2	330	6.0	2.0	Х
10.2	330	3.5	1.5	Х	21.2	330	9.8	2.5	Х
10.2	330	4.9	1.4	Х	22.2	330	6.0	2.0	Х
10.2	330	5.0	1.2	Х	22.2	330	10.8	2.5	Х
11.2	330	3.4	1.2	Х	23.2	330	7.3	2.0	Х
11.2	330	4.9	1.4	Х	23.2	330	10.8	2.5	Х
12.2	330	3.5	0.9	Х	24.2	330	7.3	2.0	Х
12.2	330	6.2	1.5	Х	24.2	330	11.8	3.0	Х
13.2	330	3.4	1.2	Х	25.2	330	7.3	2.0	Х
13.2	330	5.9	1.8	Х	25.2	330	11.8	3.0	Х
14.2	330	3.5	1.5	Х	26.2	330	12.8	3.0	Х
15.2	330	4.9	1.5	Х	28.2	330	13.8	3.0	Х
15.2	330	6.9	2.0	Х	30.2	330	13.8	3.0	Х
16.2	330	5.0	1.5	Х	32.2	330	13.8	3.0	Х
16.2	330	6.2	2.0	Х	34.2	330	13.8	3.0	Х

AGrade Tungsten carbide gun drill blanks and inserts, as sintered

type				dimensior	l				grade
	Outsic	le Diameter:mm	Hole diameter mm		T mm		Picth: mm		
	ØD	Tol.	Ød	Tol.	Т	Tol.	Pitch	Tol.	AS10
Ø6*330	6.0	+0.60 ~ +1.00	0.70	±0.10	2.60	-0.4	32.70	±0.85	Ø
Ø8*330	8.0	+0.70~+1.10	1.00	±0.15	4.00	-0.4	43.53	±1.05	Ø
Ø10*330	10.0	+0.70~+1.10	1.40	±0.15	4.80	-0.6	54.41	±1.25	Ø
Ø12*330	12.0	+0.70~+1.10	1.40	±0.15	6.25	-0.6	65.30	±1.45	Ø
Ø14*330	14.0	+0.70~+1.10	1.75	±0.20	7.10	-0.8	76.18	±1.65	Ø
Ø15*330	15.0	+0.70~+1.10	1.75	±0.20	7.70	-0.8	81.62	±1.75	Ø
Ø16*330	16.0	+0.70~+1.10	1.75	±0.20	8.30	-0.8	87.06	±1.85	O
Ø18*330	18.0	+0.70~+1.10	2.00	±0.25	9.55	-0.8	97.95	±2.15	O
Ø20*330	20.0	+0.70~+1.10	2.50	±0.25	10.40	-1.0	108.83	±2.45	Ø

	Dimension		Sto	ock			Dimension		Stock		
S mm	B mm	Lmm	AS7	AS10	1 1	S mm	B mm	Lmm	AS7	AS10	
	3.3	330	Х	X	1 1		20.4	330	Х	X	
1.3	4.3	330	Х	Х			22.4	330	Х	Х	
	2.3	330	Х	Х	1	3.3	25.4	330	Х	Х	
	3.3	330	Х	Х			30.4	330	Х	Х	
	4.3	330	Х	Х			32.4	330	Х	Х	
1.8	5.3	330	Х	Х			4.3	330		Х	
1.0	6.3	330	Х	X			5.3	330	Х	X	
	8.3	330			6.3	330	Х	X			
	10.3	330	Х	Х			8.3	330	Х	Х	
	2.3	330		X			10.3	330	Х	X	
	3.3	330	Х	X			12.4	330	Х	X	
	4.3	330	Х	X		4.3	14.4	330	Х	X	
	5.3	330	Х	X		4.3	16.4	330	Х	X	
	6.3	330	Х	X		18.4	330	Х	X		
	8.3	330	Х	X		20.4	330	Х	X		
2.3	10.3	330	Х	X			22.4	330	Х	Х	
	12.4	330	Х	X			25.4	330	Х	X	
	15.4	330	Х	X			30.4	330	Х	X	
	16.4	330	Х	X			35.4	330	Х	X	
	18.4	330	Х	Х			5.3	330		Х	
	20.4	330	Х	X			8.3	330	Х	X	
	25.4	330	Х	X			10.3	330	Х	X	
	4.3	330	Х	Х			15.4	330	Х	Х	
	6.3	330	Х	X			16.4	330	Х	X	
2.8	8.3	330	Х	X		5.3	18.4	330	Х	X	
2.0	10.3	330	Х	Х			20.4	330	Х	Х	
	12.4	330	Х	Х			22.4	330	Х	Х	
	15.4	330	Х	Х			25.4	330	Х	X	
	3.3	330		Х			30.4	330	Х	X	
	4.3	330	Х	Х			35.4	330	Х	Х	
	5.3	330	Х	Х			6.3	330	Х	Х	
	6.3	330	Х	Х			16.4	330	Х	Х	
	8.3	330	Х	Х		6.3	20.4	330	Х	Х	
3.3	10.3	330	Х	Х	0.3	25.4	330	Х	Х		
	12.4	330	Х	Х		30.4	330	Х	Х		
	13.4	330	Х	Х	4		35.4	330	Х	Х	
	14.4	330	Х	Х		8.3	8.3	330		Х	
	16.4	330	Х	Х		10.3	10.3	330		Х	
	18.4	330	Х	Х		12.4	12.4	330		Х	

thickness	Width	Length	AS10	AS7	AU12	AF12
(mm)	(mm)	(mm)				
1.0	100	100	х			x
4.0	100	100	х			x
5.0	100	100	х			x
6.0	100	100	х			x
8.0	100	100	х	х	х	
10.0	100	100				
18.0	100	100				
20.0	100	100				
40.0	100	100				
45.0	100	100				Х

T. C. gun c		T. C. gur	n drill tips	
Dimension D*L	AF6	rade AS10	Dimension D*L	AF6
2.4*340mm		AOTO		
3.5*340mm	x			
4.5*340mm	x			
5.5*340mm	x			
6.5*340mm	X			
7.0*342mm	x		7.0*35mm	
7.5*342mm	X		7.5*35mm	
8.0*342mm	X		8.0*35mm	
8.5*342mm	X		8.5*35mm	
9.0*342mm	X		9.0*35mm	
9.5*342mm	X		9.5*35mm	
10.0*342mm	X		10.0*35mm	
10.5*342mm	X		10.5*40mm	
11.0*342mm	X		11.5*40mm	
11.5*342mm	x		12.5*40mm	
12.0*342mm	x		13.5*40mm	
12.5*342mm	x		14.5*40mm	
13.0*342mm			15.5*40mm	
13.5*342mm	X		16.5*40mm	
14.0*342mm			17.5*40mm	
14.5*342mm	Х		18.5*40mm	
15.0*342mm			19.5*45mm	
15.5*342mm	x		20.5*45mm	
16.0*342mm			21.5*45mm	
16.5*342mm	x		22.3*50mm	x
17.0*342mm			23.3*50mm	x
17.5*342mm	x		24.3*55mm	x
18.0*342mm			25.3*55mm	x
18.5*342mm	x		26.3*55mm	x
19.0*342mm			27.3*55mm	x
19.5*342mm	x		28.3*65mm	x
20.0*342mm			30.3*65mm	x
20.5*342mm	x		32.3*65mm	x
21.5*342mm	х		33.3*65mm	x

)*L AF6 AS10 n n n n n n n n n n n n n х n Х n х n х n х n х n х n х n х n n х

grade